If it's not what You are looking for type in the equation solver your own equation and let us solve it.
y^2-201y+9900=0
a = 1; b = -201; c = +9900;
Δ = b2-4ac
Δ = -2012-4·1·9900
Δ = 801
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{801}=\sqrt{9*89}=\sqrt{9}*\sqrt{89}=3\sqrt{89}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-201)-3\sqrt{89}}{2*1}=\frac{201-3\sqrt{89}}{2} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-201)+3\sqrt{89}}{2*1}=\frac{201+3\sqrt{89}}{2} $
| 138=6x+24 | | 2x/3+1=x/3-2 | | 5b-3=3b-19 | | 2(5-x)-4(x-3)=6(2-x)+10 | | 3v−10=2 | | 9x-6+7x+15=6x+6 | | -c/9-42=30 | | 11(p+1)=11 | | 4|c-3|=16 | | (5y−21)=64 | | -47=8(-2p+3)-(8+5p) | | 3b-10+b+8=90 | | X²–6x+9=0 | | 12(y+5)=13 | | x^2/0.101-x=2.86*10^-3 | | 2c-4=c+6 | | 2(y-9)=2y-18 | | 2x+1=7x+44 | | w+5/10=9 | | (12x+9)=(8x+11) | | 3(1+7x)-6(6-7x)=30 | | 9x-6+7x+15+6x+6=180 | | (12x+9)=8x+11) | | 0.06•m=7.2 | | -7/2v=42 | | 9=-3/5w | | 110=x^2+1x | | 10p+2=12 | | 2x+20+3x+15=180 | | 10=3w=1 | | -0.06+m=7.2 | | 30=27-t/32 |